Genome-wide association study for circulating levels of PAI-1 provides novel insights into its regulation.

TitleGenome-wide association study for circulating levels of PAI-1 provides novel insights into its regulation.
Publication TypeJournal Article
Year of Publication2012
AuthorsHuang J, Sabater-Lleal M, Asselbergs FW, Tregouet D, Shin S-Y, Ding J, Baumert J, Oudot-Mellakh T, Folkersen L, Johnson AD, Smith NL, Williams SM, Ikram MA, Kleber ME, Becker DM, Truong V, Mychaleckyj JC, Tang W, Yang Q, Sennblad B, Moore JH, Williams FMK, Dehghan A, Silbernagel G, Schrijvers EMC, Smith S, Karakas M, Tofler GH, Silveira A, Navis GJ, Lohman K, Chen M-H, Peters A, Goel A, Hopewell JC, Chambers JC, Saleheen D, Lundmark P, Psaty BM, Strawbridge RJ, Boehm BO, Carter AM, Meisinger C, Peden JF, Bis JC, McKnight B, Öhrvik J, Taylor K, Franzosi M G, Seedorf U, Collins R, Franco-Cereceda A, Syvänen A-C, Goodall AH, Yanek LR, Cushman M, Müller-Nurasyid M, Folsom AR, Basu S, Matijevic N, van Gilst WH, Kooner JS, Hofman A, Danesh J, Clarke R, Meigs JB, Kathiresan S, Reilly MP, Klopp N, Harris TB, Winkelmann BR, Grant PJ, Hillege HL, Watkins H, Spector TD, Becker LC, Tracy RP, März W, Uitterlinden AG, Eriksson P, Cambien F, Morange P-E, Koenig W, Soranzo N, van der Harst P, Liu Y, O'Donnell CJ, Hamsten A
Corporate AuthorsDIAGRAM Consortium, CARDIoGRAM consortium, C4D Consortium, Cardiogenics Consortium
Date Published2012 Dec 6
KeywordsAdaptor Proteins, Signal Transducing, ARNTL Transcription Factors, Cell Line, Cell Line, Tumor, Cohort Studies, Coronary Artery Disease, Diabetes Mellitus, Type 2, Gene Expression Profiling, Gene Expression Regulation, Gene Frequency, Genome-Wide Association Study, Genotype, Humans, LIM Domain Proteins, Meta-Analysis as Topic, Monocytes, Mucin-3, Plasminogen Activator Inhibitor 1, Polymorphism, Single Nucleotide, PPAR gamma, RNA Interference, Transcription Factors

We conducted a genome-wide association study to identify novel associations between genetic variants and circulating plasminogen activator inhibitor-1 (PAI-1) concentration, and examined functional implications of variants and genes that were discovered. A discovery meta-analysis was performed in 19 599 subjects, followed by replication analysis of genome-wide significant (P < 5 × 10(-8)) single nucleotide polymorphisms (SNPs) in 10 796 independent samples. We further examined associations with type 2 diabetes and coronary artery disease, assessed the functional significance of the SNPs for gene expression in human tissues, and conducted RNA-silencing experiments for one novel association. We confirmed the association of the 4G/5G proxy SNP rs2227631 in the promoter region of SERPINE1 (7q22.1) and discovered genome-wide significant associations at 3 additional loci: chromosome 7q22.1 close to SERPINE1 (rs6976053, discovery P = 3.4 × 10(-10)); chromosome 11p15.2 within ARNTL (rs6486122, discovery P = 3.0 × 10(-8)); and chromosome 3p25.2 within PPARG (rs11128603, discovery P = 2.9 × 10(-8)). Replication was achieved for the 7q22.1 and 11p15.2 loci. There was nominal association with type 2 diabetes and coronary artery disease at ARNTL (P < .05). Functional studies identified MUC3 as a candidate gene for the second association signal on 7q22.1. In summary, SNPs in SERPINE1 and ARNTL and an SNP associated with the expression of MUC3 were robustly associated with circulating levels of PAI-1.

Alternate JournalBlood
PubMed ID22990020