Black Carbon Reduces the Beneficial Effect of Physical Activity on Lung Function

TitleBlack Carbon Reduces the Beneficial Effect of Physical Activity on Lung Function
Publication TypeJournal Article
Year of Publication2018
AuthorsLaeremans M., Dons E., Avila-Palencia I., Carrasco-Turigas G., Orjuela-Mendoza J.P, Anaya-Boig E., Cole-Hunter T., de Nazelle A., Nieuwenhuijsen M., Standaert A., Van Poppel M., De Boever P., L. Panis I
JournalMed Sci Sports ExercMedicine and Science in Sports and ExerciseMedicine and Science in Sports and Exercise
Date PublishedApr 9
ISBN Number0195-9131
Accession Number29634643
Abstract

INTRODUCTION: When physical activity is promoted in urban outdoor settings (e.g. walking and cycling), individuals are also exposed to air pollution. It has been reported that short-term lung function increases as a response to physical activity, but this beneficial effect is hampered when elevated air pollution concentrations are observed. Our study assessed the long-term impact of air pollution on the pulmonary health benefit of physical activity. METHODS: Wearable sensors were used to monitor physical activity levels (SenseWear) and exposure to black carbon (microAeth) of 115 healthy adults during one week in three European cities (Antwerp, Barcelona, London). The experiment was repeated in three different seasons to approximate long-term behavior. Spirometry tests were performed at the beginning and end of each measurement week. All results were averaged on a participant level as a proxy for long-term lung function. Mixed effect regression models were used to analyze the long-term impact of physical activity, black carbon and their interaction on lung function parameters FEV1, FVC, FEV1/FVC, FEF25-75 and PEF. Interaction plots were used to interpret the significant interaction effects. RESULTS: Negative interaction effects of physical activity and black carbon exposure on FEV1 (p=0.07), FEV1/FVC (p=0.03) and FEF25-75 (p=0.03) were observed. For black carbon concentrations up to approximately 1 mug/m, an additional METhour per week resulted in a trend towards lung function increases (FEV1, FEV1/FVC and FEF25-75 increased 5.6 mL, 0.1% and 14.5 mL/s, respectively). CONCLUSION: We found that lung function improved with physical activity at low black carbon levels. This beneficial effect decreased in higher air pollution concentrations. Our results suggest a greater need to reduce air pollution exposures during physical activity.

Short TitleMed. Sci. Sports Exerc.Med. Sci. Sports Exerc.
Alternate JournalMedicine and science in sports and exercise